Liposomal Formulation Delivers Medication More Effectively

By Mayra Pierce


Nanotechnology is a branch of science that manipulates materials on a molecular and atomic level. Liposomes are artificially created microscopic bubbles composed of materials similar to human cell membranes called phospholipids, portions of which are alternately repelled or attracted to water. Liposomal formulation is a process that creates these structures for a more effective use in the delivery of medications.

The significance of these vesicular containers containing soluble molecules first became apparent soon after they appeared during the 1960s. Pharmacists as well as researchers recognized their potential for safely and slowly administering specific pharmaceuticals important to treating cancer and other illnesses. The new method could target undesirable cells more efficiently, and had fewer side issues associated with some medications.

The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.

Molecules of medication are suspended in water inside these cellular structures, and encased in membranes created both naturally or artificially. They can be designed in ways that make them ideal mechanisms for enveloping hydrophilic drugs, or molecular groups that are attracted to and become easily transported in water. When manufactured using current processes, they form two groups called multilammelar and unilammelar, both of which include subcategories.

Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.

This process is not only more effectively managed, but is also bio-compatible with human cells, and leaves no additional toxic residue. Some recently developed types of these capsules can be activated using ultrasound, which increases their efficacy in the locations where they are most needed. Others are dispensed via the respiratory system, and are directly deposited into the lungs and then slowly released, reducing overall toxicity.

It is still comparatively costly to manufacture these microscopic capsules. As practicality increases and research finds new uses and procedures, expenses will probably decrease, but still remain high. As is the case in most newer technologies, there are still many unresolved issues. Some forms of these artificial cells have had problems with wall or membrane leakage, while others have been degraded by oxidation and other natural processes.

Like other technologies developed for medicine, liposomes have a growing commercial use. They are being touted as superior methods of delivering vitamin, mineral, and herb formulations, and some individuals today even create their own supplements. While those uses are controversial in some aspects, the creation of new medication delivery and activation systems continues to provide new hope for more effective treatments.




About the Author:



No comments:

Post a Comment